Many Thanks for the 2005 Convention

John Migas — Saugatuck, Michigan

On behalf of the Lake Michigan Chapter I thank all the attendees to our recent ASA convention held in Holland, Michigan. Also, many thanks to the weatherman for the perfect week. On the last day of the convention, rain came steady and heavy. By the Monday after the convention, most flowers had fallen off. Talk about perfect timing.

Our volunteers deserve mentioning, starting with Barb and Robert Wetzel, for putting the “welcome bags” together; Sharon and Dan Kunst, for working the plant sale room; Tad Dauksza, for the plant list; Rocky Voci, for the program; Sandra Wearne, for a great job on the Web site; and many thanks to Joe LaMantia for registration.

Thank you to our garden stops: the staff of Windmill Island and Veldheer Tulip Farm; the Alexander family; the Hartsuikers; Robert Hutchinson; the Hops; Karen and Herb Tews of the Button Gallery; Linda Charvat and Rosebay Nursery; the Willis family, and the Flower Basket.

Many thanks, once again, to Carol and Bruce Hop along with the staff of Wavecrest Nursery for hosting lunch on Day 1 of the tours. Also thanks to Joe LaMantia, Rocky Voci, and my brother Dan Migas for preparing lunch on Day 2. I hope the choice of stops and the meals for lunch were satisfying. Thanks to Brian Lernowich, and Tom and Chris Mallory for following behind the bus to pick up any lost visitors. Thank you to Dave Gregersen, Stacy Honson, and Dick Bont for monitoring the par 3 contest, which was won by, you guessed it, John Migas, who practiced that shot for many weeks. Thanks also goes to John Brown who helped with the auction on Saturday night and who was our auctioneer.

Polyploidization of Evergreen Azaleas

Caitlin Klimavicz — Vienna, Virginia

Introduction

The characteristics that separate polyploid azaleas from diploid azaleas are the tendency of polyploids to have thick leaves and petals, dark green foliage, blight-resistant flowers, long-lasting flowers, increased opportunity to cross with deciduous azaleas, and a better marketability due to the fact that they look healthier year round (1). The purpose of this project, spanning over two years, was to determine a reliable and easily repeatable way to produce polyploid azaleas.

Diploid azaleas have 26 chromosomes (13 pairs). The greatest number of chromosomes ever recorded was 152 (76 pairs) (2). Some well known polyploids include: 'Harunosono', 'Wako', 'Taihei', and 'Gesutoku'. There are two types of polyploid azaleas, allopolyploids and autopolyploids. Autopolyploids are usually sterile because of the odd number of chromosomes, while allopolyploids are usually fertile (3).

I have worked with my father for many years on a hybridization program aimed at developing sturdy azalea varieties that are better able to survive neglect and still look good. Specific hybridization objectives include a plant that is vigorous, disease- and insect-resistant, florifer-